Теория игр

Теория игр [game theory] — раздел современной математики, изучающий математические модели принятия решений в так называемых конфликтных ситуациях (т.е. ситуациях, при которых интересы участников либо противоположны и тогда эти модели называются «антагонистическими играми», либо не совпадают, хотя и не противоположны, и тогда речь идет об «играх с непротивоположными интересами«). Основоположники теории Дж. фон Нейман и О.Моргенштерн попытались математически описать характерные для рыночной экономики явления конкуренции как некую «игру«. В наиболее простом случае речь идет о противоборстве только двух противников, например, двух конкурентов, борющихся за рынок сбыта (о дуополии). В более сложных случаях в игре участвуют многие, причем они могут вступать между собой в постоянные или временные коалиции, союзы. Игра двух лиц называется парной; когда в ней участвуют n игроков — это «игра n — лиц«, в случае образования коалиций игра называется «коалиционной«.

Суть игры в том, что каждый из участников принимает такие решения (т.е. выбирает такую стратегию действий), которые, как он полагает, обеспечивают ему наибольший выигрыш или наименьший проигрыш, причем этому участнику игры ясно, что результат зависит не только от него, но и от действий партнера (или партнеров), иными словами, он принимает решения в условиях неопределенности. Эти решения отражаются в таблице, которая называется матрицей игры, или платежной матрицей.

Одной из задач Т.и. является выяснение того, возможно ли, и если возможно, то при каких условиях, некоторое равновесие (компромисс), в наибольшей степени устраивающее всех участников. При этом часто обнаруживается такая точка ( см .»седловая точка«), в которой достигается подобное равновесие.

Принципиальным достоинством Т.и. считают то, что она расширяет общепринятое понятие оптимальности, включая в него такие важные элементы, как, например, компромиссное решение, устраивающее разные стороны в подобном споре (игре). На практике же игровые подходы используются отечественными экономистами при разработке  моделей, в которых учитываются интересы различных звеньев экономики. Кроме того, математические приемы Т.и. могут применяться для решения многочисленных практических экономических задач на промышленных предприятиях. Например, для выбора оптимальных решений в области повышения качества продукции или определения запасов. «Противоборство» здесь происходит в первом случае между стремлением выпустить больше продукции (затратить на нее, в расчете на единицу, меньше труда) и сделать ее лучше, т.е. затратить больше труда, во втором случае — между желанием запасти ресурсов побольше, чтобы быть застрахованным от случайностей, и запасти поменьше, чтобы не замораживать средства.

Следует отметить, что подобные задачи решаются и другими экономико-математическими способами. И это не случайно. Многие задачи Т.и. могут быть сведены, например, к задачам линейного программирования, и наоборот.

Классификация игр пока не может считаться разработанной. Перечень видов игр, рассматриваемых в словаре, см. в статье Игра. См. также: Выигрыш, Гурвица критерий, Дерево игры, Игрок, Коалиция, Максимакс, Максимин, Матрица выигрышей, Матрица игры, Минимакс, Платежная матрица, Платежная функция, Побочный платеж, Решение игры, Сэвиджа критерий, Седловая точка игры, Смешанная стратегия, Стратегия, Характеристическая функция, Ход, Цена игры, Чистая стратегия, Ядро игры.