Многомерный статистический анализ

Многомерный статистичес­кий анализ [multidimensional, multivariate statistical analysis] — «раздел математической ста­тистики, посвященный математическим методам построения оптимальных планов сбора, систематизации и обработки данных, направленным на выявление характера и структуры взаимосвязей между компонентами исследуемого многомерного признака и предназначеннным для получения научных и практических выводов»[1].

Включает дискриминантный анализ, кластер-анализ и другие математико-статисти­чес­кие методы, как правило, не опирающиеся на предпосылку о вероятностном характере исследуемых зависмостей (см. Прикладная статистика). В частности, дискриминантный анализ предназначен для решения задач, связанных с разделением совокупностей наб­людений (элементарных данных). Если у исследователя имеется по одной выборке из каждой неизвестной ему генеральной совокупности (такую выборку назвают «обучаю­щей«), то с помощью методов дискри­минантного анализа уда­ется при­писать некоторый но­вый элемент (наблюдение x) к своей генеральной совокупности.

Кластер-анализ (от слова кластер) позволяет разбивать исследуемую совокупность элементов (коорди­на­ты которых известны) таким образом, чтобы элементы одного класса находились на небольшом расстоянии друг от друга, в то время как разные классы были бы на достаточном удалении друг от друга и не разбивались бы на столь же взаимоудаленные части.

Применяются также модели многомерных  экономически рядов.

Методы многомерного ана­лиза сложны с вычислительной точки зрения и потому реализуются, как правило, на компьютерах, для которых созданы необходимые типовые программы.

 


[1] Математическая энциклопедия, т. 3. 1982.