Математическая статистика

Математическая статистика [mathematical statistics] — раздел математики, посвященный методам и правилам обработки и анализа статистических данных (т.е. сведений о числе объектов, обладающих определенными признаками, в какой-либо более или менее обширной совокупности). Сами методы и правила строятся безотносительно к тому, какие статистические данные обрабатываются (физические, экономические и др.), однако обращение с ними требует обязательного понимания сущности явления, изучаемого с помощью этих правил.

К экономике М.с. применима по той причине, что экономические данные всегда представляют собой статистические сведения, т.е. сведения об однородных совокупностях объектов и явлений. Такими однородными совокупностями могут быть выпускаемые промышленностью изделия, персонал промышленности, данные о прибылях предприятий и т.д.

В настоящее время существуют разные определения сущности М.с., и не следует удивляться, если вы увидите в одной книге, вопреки сказанному выше, утверждение, что М.с. — это «наука о принятии решений в условиях неопределенности», а в другой — что это «наука, объясняющая данные статистических наблюдений при помощи вероятностных моделей».  Некоторые авторы считают, что она — раздел теории вероятностей, а другие, — что она лишь связана с этой теорией, представляя собой отдельную от нее науку. Наконец, распространено расширенное понимание предмета М.с. как охватывающей не только вероятностные аспекты, но и так называемую прикладную статистикуанализ данных«), включающую и объекты не обязательно вероятностной природы.

В общем случае, анализ статистических данных методами М.с. позволяет сделать два вывода: либо вынести искомое суждение о характере и свойствах этих данных или взаимосвязей между ними, либо доказать, что собранных данных недостаточно для такого суждения. Причем выводы могут делаться не из сплошного рассмотрения всей совокупности данных, а из ее выборки, как правило, случайной (последнее означает, что каждая единица, включенная в выборку, могла быть с равными шансами, т.е. с равной вероятностью заменена любой другой).

Центральное понятие М.с. — случайная величина — всякая наблюдаемая величина, изменяющаяся при повторениях общего комплекса условий, в которых она возникает. Если сам по себе набор, перечень значений этой величины неудобен для их изучения (поскольку их много), М.с. дает возможность получить необходимые сведения о случайной величине с существенно меньшим количеством чисел. Это объясняется тем, что статистические данные подчиняются таким законам распределения (или приводятся к ним порою искусственными приемами), которые характеризуются всего лишь несколькими параметрами, т.е. характеристиками. Зная их, можно получить столь же полное представление о значениях случайной величины, какое дается их подробным перечислением в очень длинной таблице. (Характеристиками распределения являются среднее, медиана, мода и т.д.).

Если изучаются взаимосвязи между значениями разных случайных величин, то необходимые сведения для этого дают коэффициенты корреляции между ними.

Когда совокупность анализируется по одному признаку, имеем дело с так называемой одномерной статистикой, когда же рассматривается несколько  признаков — с многомерным статистическим анализом.

М.с. охватывает широкий круг одномерных и многомерных методов и правил обработки статистических данных: от простых приемов статистического описания (выведение средней, а также степени и характера разброса исследуемых признаков вокруг нее, группировка данных по классам и сопоставление их характеристик и  т.д.), правил отбора фактов при выборочном их рассмотрении до сложных методов исследования зависимостей между случайными величинами. Среди последних: выявление связей между случайнами величинами — корреляционный анализ, оценка величины случайной переменной, если величина другой или других известна — регрессионный анализ, выявление наиболее важных скрытых факторов, влияющих на изучаемые величины, — факторный анализ, определение степени влияния отдельных неколичественных факторов на общие результаты их действия (например, в научном эксперименте) — дисперсионный анализ. Перечисленные области составляют основные дисциплины, входящие в М.с. К ним примыкают также быстро развивающиеся упоминавшиеся выше методы «анализа данных», не основанные на традиционной для М.с. предпосылке вероятностной природы обрабатываемых данных .

Для экономических исследований большое значение имеет также анализ стохастических процессов, в том числе «марковских процессов«.

Задачи М.с. в экономике можно разделить на пять основных типов: а) оценка статистических данных; б) сравнение этих данных с каким-то стандартом и между собой (оно применяется при эксперименте или, например, в контроле качества на предприятиях); в) исследование связей между статистическими данными и их группами. Эти три типа позволяют вынести суждение описательного характера об изучаемых явлениях, подверженных по каким-то причинам искажающим случайным воздействиям. Следующий, четвертый тип задач связан с нахождением наилучшего варианта измерения изучаемых данных. И наконец, пятый тип задач связан с проблемами предвидения и развития, здесь важное место занимают задачи анализа временных рядов.

Для экономики особенно ценно то, что М.с. позволяет на основании анализа течения событий в прошлом, т. е. изучения выбранных на определенные даты сведений о характерных чертах системы, предсказать (см. Прогнозирование) вероятное развитие изучаемого явления в будущем (если не изменятся существенно внешние или внутренние условия).

В управлении хозяйственными и производственными процессами применяются различные математико-статистические методы. На них основаны многие методы исследования операций, в том числе — методы теории массового обслуживания, позволяющие наиболее эффективно организовывать ряд процессов производства и обслуживания населения, теории расписаний, предназначенной для выработки оптимальной последовательности производственных, транспортных и других операций, теории решений, теории управления запасами, а также теории планирования эксперимента и выборочного контроля качества продукции, сетевые методы планирования и управления.

В эконометрических исследованиях на основе математико-статистической обработки данных строятся экономико-мате­матические (экономико-статистические) модели экономических процессов, производятся экономические и технико-эконо­ми­чес­кие прогнозы. Широкое распространение математико-статистических методов в общественном производстве, а также в других областях социально-экономической жизни общества (здравоохранение, экология, естественные науки) опирается на развитие электронно-вычислительной техники. Для решения типовых задач математико-статистической обработки данных созданы и применяются многочисленные стандартные прикладные компьютерные программы и системы.